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Abstract— Following detection and tracking of traffic actors,
prediction of their future motion is the next critical component
of a self-driving vehicle (SDV) technology, allowing the SDV
to operate safely and efficiently in its environment. This is
particularly important when it comes to vulnerable road users
(VRUs), such as pedestrians and bicyclists. These actors need to
be handled with special care due to an increased risk of injury,
as well as the fact that their behavior is less predictable than
that of motorized actors. To address this issue, in the current
study we present a deep learning-based method for predicting
VRU movement, where we rasterize high-definition maps and
actor’s surroundings into a bird’s-eye view image used as an
input to deep convolutional networks. In addition, we propose
a fast architecture suitable for real-time inference, and perform
an ablation study of various rasterization approaches to find
the optimal choice for accurate prediction. The results strongly
indicate benefits of using the proposed approach for motion
prediction of VRUs, both in terms of accuracy and latency.

I. INTRODUCTION

Predicting movement of traffic actors is a critical part
of the autonomous technology. Once a self-driving vehicle
(SDV) successfully detects and tracks a traffic actor in its
vicinity, it needs to understand how will they move in the
near future in order for both actors and SDV to be safe during
operations [1]. This holds particularly true for vulnerable
road users (VRUs), defined as traffic actors with increased
risk of injury, unprotected by an outside shield [2]. Road
planners and policy makers have recognized this problem
many decades ago, and attempted to mitigate it through
several means. This included legal frameworks, designing
new road types (e.g., segregating VRUs from motorized
actors), educating both drivers and VRUs (with particular
focus on children and elderly that are at an even greater
risk than others [2], [3]), to name a few. These approaches
have however given limited results, and in the US proportion
of VRU deaths within overall traffic fatalities has actually
increased between 2008 and 2017 from 14% to 19% [4]
despite these best efforts.

In the current study we address a critical aspect of the SDV
technology, focusing on predicting future motion for VRUs,
namely pedestrians and bicyclists. The main contributions of
the paper are summarized below:
• We present a system for motion prediction of VRU

traffic actors, building upon recently proposed context
rasterization techniques [1];
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• We propose a fast and efficient convolutional neural
network (CNN) architecture, suitable for running real-
time onboard an SDV operating in crowded urban
scenes with a large number of VRU actors;

• We present a detailed study of various rasterization
settings identifying the optimal settings for accurate
prediction, and provide critical insights into which parts
of the system contribute the most to the accuracy;

• Following completion of offline tests the system was
successfully tested onboard SDVs.

II. RELATED WORK

Efficient and accurate motion prediction of VRUs is one
of the key requirements to safely deploy SDVs in complex
urban environments [5]. In this section we provide a literature
overview of motion prediction of pedestrians and bicyclists
in the context of autonomous driving.

Motion prediction. A common approach for prediction
of VRU movement in autonomous driving systems is to use
motion model from a tracking component to predict their
future states. Tracking modules of most existing autonomous
systems use either the Brownian or the constant velocity
motion models [6]. These models do not take into account
scene contexts, and therefore fail in long-term prediction
tasks as VRU motion follows complex patterns constrained
by static and dynamic obstacles along the path. Traditionally,
hand-crafted features were used for motion prediction of
VRUs with respect to their surroundings. The social force
model for pedestrian motion prediction incorporated inter-
active forces that guide pedestrians towards their goals and
enforce collision avoidance among pedestrians, as well as
between pedestrians and static obstacles [7], [8]. Similar
approach was applied for bicyclist motion prediction [9]. In
[10] authors introduced a motion model for bicyclist motion
prediction that incorporates knowledge of the road topology.
The authors were able to improve prediction accuracy by
using specific motion models for a pre-specified set of
canonical directions. In [11] interacting Gaussian Processes
(GPs) with multiple goals were applied to model human
cooperation in dense crowds for robot navigation. Authors
of [12] predicted pedestrian trajectories by incorporating
semantic scene features into the GP model, such as relative
distance to curbside and state of traffic lights. A significant
number of studies are devoted to modeling pedestrian motion
using maximum entropy Inverse Reinforcement Learning
(IRL) [13]. In a followup work [14] the authors introduced
an IRL model based on a set of manually designed feature



functions that capture interaction and collision avoidance
behavior of pedestrians. While the approaches are capable
of predicting pedestrian and bicyclist motions in many sce-
narios, the need for manual design of features makes them
hard to scale in complex driving environments [15].

Motion prediction using deep learning. Inspired by their
success in various areas of computer vision and robotics,
many deep learning-based approaches were recently pro-
posed for the motion prediction task in order to model
object-object and object-scene interactions which may not be
straightforward to represent manually. Most of deep learning
approaches are based on Long Short-Term Memory (LSTM)
variant of recurrent neural networks (RNNs) [16]. Authors
of [17] used a sequence-to-sequence LSTM encoder-decoder
architecture to predict pedestrian position and heading. Incor-
porating angular information in addition to temporal features
led to a significant improvement in accuracy. With respect
to modeling of dynamic context, [18] proposed an LSTM-
based approach for pedestrian motion prediction employing
a “social pooling” layer that uses spatial information of
nearby actors to implicitly model interactions among them.
Vemula et al. [19] proposed “social attention” method to
predict motion by estimating relative importance of pedes-
trians through an attention layer. Recently, [20] proposed
an LSTM-based Generative Adversarial Network (GAN)
to generate and predict socially feasible motions. On the
other hand, with respect to modeling of static context [21]
proposed an LSTM-based model that incorporates the map
of static obstacles and position of surrounding pedestrians.
Moreover, [22] presented SoPhie, an LSTM-based GAN
system for predicting physically and socially acceptable
pedestrian trajectories using an RGB image from the scene
and the trajectory information of surrounding actors. Simi-
larly, in recent work [15], [23] authors incorporated scene
information as well as human movement trajectories. In
addition to LSTM-based methods, [24] proposed CNN-based
approach where convolutional layers are utilized to handle
temporal dependencies. [25] used an interaction-aware tem-
poral CNN to predict pedestrian trajectories. [26] proposed
a hybrid LSTM-CNN model that encodes actor states with
LSTM and uses CNN to extract actor interaction features,
while taking the varying behaviors of different road actors
into account. [27] use CNNs for joint detection, tracking,
and prediction. However, these models do not consider scene
context, which can provide a strong signal on how the actors
would move. On the other hand, in [28] the authors included
map info to also predict high-level intent of vehicles, unlike
our model that focuses on VRU actors instead.

Efficient CNN architectures. Since the introduction of
seminal AlexNet [29], researchers made significant progress
in improving CNNs to make them more accurate and effi-
cient. The state-of-the-art architectures, such as VGG [30] or
ResNet [31], tend to have a large number of layers running
expensive computations, making them unsuitable for real-
time inference. Recent proposals such as MobileNet [32]
and ShuffleNet [33] replaced regular convolutional operator
with a more efficient depthwise separable or group convolu-

Fig. 1: Example input raster for a pedestrian model with
overlaid ground-truth (green) and output trajectory (blue);
the target actor is colored in red and placed at the bottom-
center of the raster image (indicated by the red arrow)

tions, making them small and fast for mobile applications.
MobileNet-v2 (MNv2) [34] further improved the original
MobileNet by combining depthwise convolution with resid-
ual connections and bottleneck layers proposed in ResNet.
One problem of this work is its focus on reducing number
of floating point operations per second (FLOPS) instead
of optimizing for actual latency on devices. More recently,
MnasNet [35] applied search algorithms [36] to optimize
MNv2 architecture for both accuracy and inference latency
on mobile devices, and is able to improve both while main-
taining similar FLOPS. ShuffleNet v2 [37] proposed sev-
eral guidelines for designing fast networks beyond counting
FLOPS, and applied these guidelines to design architectures
suitable for both GPUs and mobile CPUs. In this paper we
build upon and extend the MNv2 model, improving its speed
on GPUs without compromising prediction accuracy.

III. PROPOSED APPROACH

We build upon work described in [1], which considered
vehicle actors and used rasterized images of actor context as
an input to CNNs to predict future trajectories. In this study
we extend the methodology to VRU actors (see Figure 1 for
an example of pedestrian motion prediction). Importantly, we
improve the existing method’s accuracy and inference speed
by exploring two critical aspects. First, we experiment with
different variations of the CNN architectures, and propose a
novel architecture that significantly reduces inference latency
without affecting accuracy; this is necessary to achieve
real-time inference onboard an SDV in crowded urban
environments comprising large number of VRUs. Second,
we explore different rasterization configurations to find an
optimal setup for highly accurate predictions of VRU actors.

Let us assume we have access to real-time data streams
coming from sensors such as lidar, radar, or camera, installed
aboard an SDV. In addition, assume these inputs are used by
an existing detection and tracking system, outputting state
estimates S for all surrounding actors (state comprises the
bounding box, position, velocity, acceleration, heading, and
heading change rate). Denote a set of discrete times at which
tracker outputs state estimates as T = {t1, t2, . . . , tT}, where
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Fig. 2: Building blocks of MobileNet-v2 [34] and the proposed FastMobileNet (FMNet) architecture

time gap between consecutive time steps is constant (e.g.,
the gap is equal to 0.1s for tracker running at a frequency of
10Hz). Then, we denote state output of a tracker for the i-th
actor at time t j as si j, where i = 1, . . . ,N j with N j being a
number of unique actors tracked at t j. Moreover, we assume
access to a detailed, high-definition map M of the SDV’s
operating area, including road and crosswalk locations, lane
directions, and other relevant map information.

Using the state estimates and high-definition map, for each
actor of interest we rasterize an actor-specific bird’s-eye view
raster image encoding the actor’s surrounding map and traffic
actors, as illustrated in Figure 1. Then, given the i-th actor’s
raster image at time step t j and state estimate si j, we use
a CNN model to predict a sequence of its future states up
to the prediction horizon of H time steps [si( j+1), . . . ,si( j+H)]
(see model architecture in Figure 3a), trained to minimize the
average displacement error (ADE) of the predicted trajectory
points. Without loss of generality, in this work we simplify
the task to infer the i-th actor’s future x- and y-positions
instead of full state estimates, while the remaining states can
be derived from the current state si j and the future predicted
position estimates. Both past and future positions at time t j
are represented in the actor-centric coordinate system derived
from actor’s state at time t j, where forward direction is x-
axis, left-hand direction is y-axis, and actor’s bounding box
centroid represents the origin.

Following the approach in [1] we use an MNv2 model
as the base CNN to compute future positions from the
input raster image. Below we describe improvements to
this architecture, followed by discussion of variations to the
rasterization process that were considered in the study.

A. Improved CNN architecture for fast inference

1) Base CNN: In this section we propose several mod-
ifications to the MNv2 architecture that lead to significant
speedup of GPU inference, making it feasible to perform
real-time inference when our SDVs operate in urban scenes
containing large number of VRUs. MNv2 is based on the
inverted bottleneck block illustrated in Figure 2a. In each
block, the input feature map is first upsampled to k times
more channels with 1×1 convolutions (k is set to 6 in the
original MNv2), followed by 3× 3 depthwise convolution
(DwConv) applied to the upsampled feature map. Then, the

feature map is compressed back to the original channel size
using 1× 1 convolution, and summed with the initial input
through residual connection. Non-linear activation function
(e.g., ReLU) is applied only in the upsampled phase, as non-
linearity in the bottlenecked phase (before the upsampling
or after the compression) causes too much information loss
and hurts model performance. BatchNorm (BN) is used in
all three layers. While the majority of the FLOPS are in
the 1×1 convolutions (amounting to 87% of the total), the
other operations still incur non-negligible cost. As discussed
in [37], FLOPS itself is not an accurate metric of latency,
and another important factor is the number of memory access
operations (MAC). Operations such as DwConv, BatchNorm,
ReLU, and BiasAdd, while having small FLOPS, typically
incur heavy MAC. This especially holds true for MNv2,
where operations in the upsampled phase have k times more
MAC than the same operations in the bottlenecked phase.

Compared to MNv2, in the proposed novel CNN archi-
tecture called FastMobileNet (FMNet) we move most of
the operations originally in the upsampled phase into the
bottlenecked phase, reducing their FLOPS and MAC by
a factor of k, as illustrated in Figure 2b. Note that we
show the architecture for an equal number of input and
output channels, if they are not the same an additional 1×1
convolution is applied after the residual connection. The only
remaining operation in the upsampled phase is a ReLU.
Similarly to MNv2, no ReLU is applied in the bottlenecked
phase since applying non-linearity there causes significant
information loss. The layers are linear in the bottlenecked
phase, and we only apply one BiasAdd at the end of the
block as applying multiple BiasAdd in consecutive linear
layers does not increase model expressiveness. We do not use
BatchNorm in FMNet as we found that the model converges
well without it, and excessive BatchNorms cost additional
computation time. In addition, we need to allow different
strides in order to reduce height and width of the feature
map during feature extraction. The FMNet block supporting
this operation is similar to the regular block (see Figure
2c), except the original input is downsampled to the correct
output size for residual connection. The base model (further
discussed and extended in the following section) is illustrated
in Figure 3a, and the FMNet architecture corresponding to
the CNN part is shown in Table I, where the layer sizes and



TABLE I: Architecture of FastMobileNet (upsample factor for all FMNet blocks is set to k = 6)

Layer Output size Stride Repeats
Raster image 300×300×3 − −
Conv 3×3 150×150×24 2 1

DwConv 3×3 75×75×24 2 1
FMNet block 1 75×75×12 1 2
FMNet block 2 38×38×16 2 3
FMNet block 3 19×19×32 2 4
FMNet block 4 19×19×48 1 3
FMNet block 5 10×10×80 2 3
FMNet block 6 10×10×160 1 1

Conv 1×1 10×10×640 1 1
Global average pooling 1×1×640 1 1
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Fig. 3: Feature fusion through (a) concatenation; and (b) spatial fusion

block repeats of the model are based on MNv2-0.5 [34] (i.e.,
MNv2 with halved channel sizes in all layers).

2) Fusion of auxiliary features: Previous work [1] showed
that combining the raster input with other state features of
actors (e.g., current and past velocity, acceleration, heading
change rate) significantly improves model accuracy. Thus, it
is beneficial to design a network that fuses the raster image
input (as a 3D-tensor of size height×width×channels) and
other auxiliary features (as a 1D-vector) that include the actor
states and/or other hand-engineered features. A straightfor-
ward way to achieve this, as done in [1], is to concatenate
the flattened CNN output from the raster image with the
1D auxiliary features, then apply additional fully-connected
layers to allow non-linear feature interactions, as shown in
Fig. 3a. In this section we propose an alternative, more effi-
cient way to fuse the raster CNN and the auxiliary features.
We convert the 1D auxiliary features into a 3D feature map
by a sequence of a fully-connected layer, reshaping, and 1×1
convolution, and fuse it into an intermediate CNN feature
map by element-wise addition, as illustrated in Fig. 3b. In
this way, we reuse existing downstream CNN computations
to achieve non-linear interactions between raster features
and the auxiliary features. This removes a need for the
additional fully-connected layer that is used in the fusion
through concatenation, thus saving valuable computation
time. Furthermore, in this way we allow the feature pixels at
different spatial locations of the CNN feature map to interact
differently with auxiliary features. We perform feature fusion
at the output of FMNet block 3 (see Table I). As discussed
in the evaluation section, we found that this spatial feature
fusion method leads to improved model accuracy and latency.

B. Exploring various rasterization settings

To describe rasterization, let us first introduce a concept
of a vector layer, formed by a collection of polygons and
lines that belong to a common type. For example, in the
case of map elements we may have vector layer of roads, of
crosswalks, and so on. To rasterize vector layer into an RGB
space, each vector layer is manually assigned a color from
a set of distinct RGB colors that make a difference among
layers more prominent. Once the colors are defined, vector
layers are rasterized one by one on top of each other in the
order from layers that represent larger areas, such as road
polygons, towards layers that represent finer structures, such
as lanes or actor bounding boxes. To represent context around
the i-th actor tracked at time step t j we create a rasterized
image Ii j of size n× n such that the actor is positioned
at pixel (w,h) within Ii j, where w represents width and h
represents height measured from the bottom-left corner of
the image, with actor heading always pointing up. We color
the actor of interest differently so that it is distinguishable
from other actors. See Figure 1 for an example raster with
pedestrian actor of interest, while more detailed explanation
of rasterization can be found in [1].

In this study we evaluated several different choices of
rasterization for the motion prediction of VRU actors, and
their impact on the model performance. For all approaches
we maintain a constant RGB raster dimension of 300×300
pixels (i.e., we set n = 300), and discuss the specifics of
various choices below.

Raster pixel resolution. The resolution governs the extent
of surrounding context seen by the model. At 0.1m resolu-



Fig. 4: Raster images for bicyclist actor (colored red) using resolutions of 0.1m, 0.2m, and 0.3m, respectively

Fig. 5: Different rasterization settings with 0.2m resolution for a bicyclist example: (a) no raster rotation, (b) no lane heading
encoding, (c) no traffic light encoding, (d) learned colors

tion, the model sees 25m in front and 5m behind the actor
(assuming the image size discussed above). Larger resolution
allows for larger context around the actor to be captured,
however the raster loses finer details which may be critical
for accuracy. To evaluate its impact we experimented with
resolutions of 0.1m, 0.2m and 0.3m, as shown in Figure 4.

Raster frame rotation. During rasterization we can rotate
each raster separately per actor [1], such that the actor
heading points up and the target actor is placed at w =
150,h = 50 (as seen in Figure 4). In this way actor heading
is encoded directly into the input, and the raster captures
more context in front of the actor. We tested an alternative
scheme where the raster frame is not rotated such that upward
direction indicates north instead, and the actor is placed in
the center (setting w = h = 150), as seen in Figure 5a.

Lane direction. As proposed in earlier work [1], the
direction of each lane segment can be encoded as a hue
value in HSV color space with saturation and value set to a
maximum, followed by the conversion of HSV to RGB color
space. Alternatively we can encode all lanes with a constant
color, such that the raster does not contain information on
lane direction. This is represented in Figure 5b where raster
does not encode lane direction, as opposed to Figure 4b
where lane color indicates its heading.

Traffic lights. We use an existing in-house traffic light
classification algorithm to extract current traffic light states
from sensor inputs. To encode this info in the input raster,
we plot traffic light states as a colored circle at location
where lane meets a traffic-light controlled intersection. Fur-
thermore, we identify inactive crosswalks and paint them
green, signaling that vehicles may pass through a crosswalk
(compare Figure 5c where raster image does not encode
traffic light info to Figure 4b where it does).

Learning raster colors. When generating raster images
the colors for each raster layer type can be chosen manually,

as proposed in [1]. An alternative approach is to have the
DNN learn the colors by itself, optimizing raster image for
the prediction task. In this study we provide all raster layers
(e.g., road and crosswalk polygons, tracked objects) to the
network as separate binary-valued channels, and add a 1×1
convolution layer with 3 output channels and linear activation
to generate the RGB raster image (see Figure 5d for an
example of a learned raster). The resulting RGB image is
then passed to the rest of the network as before.

Model pre-training. Lastly, we evaluated one modifica-
tion that is not related to rasterization choices. As the major-
ity of actors observed on roads are vehicles, our training data
has a much larger number of such traffic actors. To make
use of this data, we can initialize our VRU models with
a pre-trained vehicle model trained using more examples.
The models can then be fine-tuned using corresponding VRU
training examples until convergence.

IV. EXPERIMENTS

We collected 240 hours of data by manually driving SDV
in various traffic conditions (e.g., varying times of day, days
of the week). The data contains significantly different number
of examples for various actor types, namely 7.8 million ve-
hicles, 2.4 million pedestrians, and 520 thousand bicyclists.
Traffic actors were tracked using Unscented Kalman filter
(UKF) [38], taking raw sensor data from the camera, lidar,
and radar, and outputting state estimates for each object at
10Hz. We considered prediction horizon of 6s (i.e., H = 60)
for VRU actors. For the default rasterization scheme (used
in the architecture experiments and as a base setting in the
rasterization ablation study), we rotated raster to actor frame
with resolution of 0.2m, including in the raster image both
lane heading and traffic light layers (illustrated in Figure 4b).

We implemented models in TensorFlow [39] and trained
on 16 Nvidia GTX 1080Ti GPU cards. We used open-source
distributed framework Horovod [40] for training, completing



TABLE II: Comparison of various CNN architectures (all models except the last one use the concatenation feature fusion)

Architecture ADE [m] Latency [ms] FLOPS Num. parameters MAC Num. ops
AlexNet 1.36 15.8 2.63G 70.3M 364 MB 131

ResNet18 1.29 36.2 6.26G 11.7M 163 MB 641
MNv2-0.5 1.27 21.3 308M 598K 146 MB 1542

MnasNet-0.5 1.28 18.3 323M 844K 113 MB 1490
FMNet 1.28 12.1 340M 565K 55 MB 336

FMNet with spatial fusion 1.24 10.4 285M 558K 47 MB 370

TABLE III: Comparison of prediction displacement errors (in meters) for different experimental settings

Bicyclists Pedestrians
Approach Resolution Average @1s @5s Average @1s @5s

UKF − 2.89 0.80 6.60 0.67 0.22 1.22
Social-LSTM − 3.79 1.85 6.61 0.53 0.29 0.95

RasterNet 0.1m 1.07 0.43 2.73 0.51 0.17 0.90
RasterNet 0.2m 1.07 0.44 2.72 0.52 0.18 0.93
RasterNet 0.3m 1.09 0.45 2.80 0.53 0.18 0.95

RasterNet w/o rotation 0.2m 1.29 0.49 3.30 0.58 0.20 1.02
RasterNet w/o traffic lights 0.2m 1.11 0.44 2.86 0.55 0.20 0.96

RasterNet w/o lane headings 0.2m 1.07 0.43 2.72 0.52 0.18 0.93
RasterNet with learned colors 0.2m 1.05 0.42 2.70 0.53 0.18 0.93

RasterNet vehicle model 0.2m 3.11 0.89 8.47 1.96 0.40 3.82
RasterNet vehicle fine-tuned 0.2m 1.05 0.42 2.70 0.59 0.20 1.05

in around 24 hours. We used a per-GPU batch size of 64
and Adam optimizer [41], setting initial learning rate to 10−4

further decreased by a factor of 0.9 every 20,000 iterations.

A. Comparison of CNN architectures

In the first set of experiments we compared a number
of CNN architectures, summarizing results in Table II. To
ensure fair comparison and avoid potential issues with small
data sets, we trained all models on vehicle actors where we
set the prediction horizon to 6s. Average displacement error
and latency are reported in the table. We skip the feature
fusion layers when computing the number of parameters,
as the concatenation feature fusion adds a large amount of
parameters which complicates the comparison (an 1024×
4096 fully-connected layer for feature fusion adds 4M extra
parameters). MAC is approximated by the sum of tensor sizes
of all graph nodes. Column “Num. ops” refers to the total
number of operations in the TensorFlow graph of each model.
The inference latency is measured at a batch of 32 actors on
a GTX 1080Ti GPU. As our prediction algorithm performs
inference for each actor in the scene, having such a large
batch size is not uncommon when SDV is driving on crowded
streets. Note that model latency is implementation-specific,
as fusing graph operations manually with TensorFlow custom
ops or automatically using Nvidia TensorRT might affect
latency. For simplicity and to facilitate fair comparison, we
implemented all models using TensorFlow built-in operations
without additional optimization.

First, we compared the prediction accuracy and inference
latency on several base CNN architectures. We found that
the proposed FMNet gives similar prediction accuracy as
other modern architectures (such as ResNet, MNv2, and
MnasNet), while being much faster during inference. In
terms of the number of FLOPS and parameters, FMNet is
similar to MnasNet-0.5 and MNv2-0.5 which it is based
on, while AlexNet and ResNet18 are much more complex.

Fast inference of FMNet can be explained by low MAC and
operation counts, which we specifically optimized for during
the model design phase. It is interesting to note that AlexNet
is the second fastest CNN while having the second largest
FLOPS. This is due to it having the smallest number of
layers, as evidenced by its lowest operation counts, although
its accuracy is not on par with the competing networks.

Secondly, we found that FMNet with spatial feature fusion
further improves the accuracy and inference time when com-
pared to the model with feature fusion through concatenation.
As discussed in the previous section, the spatial fusion
allows interactions between raster and state features with
awareness of spatial locations, and removes an expensive
fully-connected layer used in the original architecture. This
resulted in lower FLOPS, as well as lower number of
parameters and MAC. Following these results we use the
best performing FMNet with spatial fusion as the model
architecture in the following study on rasterization choices.

B. Comparison of prediction models and inputs

We compared the proposed method to the state-of-the-
art baselines, and conducted an ablation study analyzing
different rasterization setups to identify an optimal setting
for accurate VRU predictions. Empirical results in terms of
average displacement error, as well as short- and long-term
displacement errors are given in Table III.

As the baselines we considered a simple rollout using the
UKF, as well as Social-LSTM [18] trained on our data. We
also tried Social-GAN [20], but it did not converge on our
data set and is thus not shown here. We can see that our
CNN with optimized architecture (referred to as RasterNet)
outperformed UKF and Social-LSTM, due to its encoding
of surrounding context and actors in the input raster. Social-
LSTM gives competitive prediction result for pedestrians
since it handles actor interactions in the network, but fails to
give accurate prediction on bicyclists. This is possibly due to



Fig. 6: Bicyclist model before and after traffic light turns red; ground-truth (green) and predicted (blue) trajectories overlaid

the lack of surrounding context information in its input (e.g.,
the lane graph and traffic signal states), which is critical for
accurate prediction of bicyclist motion.

For the rasterization ablation study, we first analyzed
accuracy of the base 0.2m-resolution, as compared to other
resolution choices. Resolution of 0.1m has smaller coverage
of the surrounding area, and is expected to benefit slow-
moving objects such as pedestrians. On the other hand, res-
olution of 0.3m may benefit faster-moving objects requiring
larger coverage, while also resulting in a loss of finer details
useful for slower-moving actors. As can be seen, 0.1m-
resolution indeed resulted in lower error for pedestrians,
while setting 0.3m gave the worst performance. We observed
that resolution of 0.1m showed no significant difference for
bicyclists, while 0.3m resulted in slightly higher error. This
may be attributed to the fact that bicyclists are not fast
enough to benefit from wider context.

Next, we evaluated the impact of not rotating raster such
that actor heading points up, as discussed in Section III-B,
which resulted in a significant drop of accuracy for both actor
types. This can be explained by the fact that when raster is
not rotated there is a large number of input data variations
that network needs to observe in order to learn how actors
move, and the input data could be augmented by randomly
rotating each example. In other words, for such setup actors
may initially move in any direction, which is not the case for
the rotated raster where actors initially always move upward,
resulting in a simplified prediction problem.

We further investigated the affect of encoding traffic light
info. The traffic light is important for predicting longitudinal
movement, as it can provide info about whether an actor
may or may not pass through an intersection. We observed
error increase without traffic light rasterization for both actor
types, matching this intuition. Figure 6 gives an illustrative
example of how additional traffic information improves pre-
diction, where the bicyclist’s predicted trajectory changed
from crossing to non-crossing due to the different traffic
light state. In this case the ground-truth trajectory is indeed
non-crossing, where the actor moved into the sidewalk to
wait for the vehicle traffic to pass. Furthermore, we removed
lane heading info provided in rasters, encoded by using
different colors to indicate different lane directions. Without

lane heading the bicyclist model degraded slightly in per-
formance, while the pedestrian model was unaffected. This
matches the intuition, as bicyclists may behave as vehicles
at times and follow lane direction, while pedestrians do not
use lane heading when in traffic. Finally, we tried learning
raster colors instead of setting them manually. The results
indicate that learned colors slightly improved accuracy for
bicyclists, whereas the pedestrian model slightly degraded
compared to the baseline. This suggests that our manual
rasterization setup captured sufficient signal when it comes
to motion prediction of pedestrians, while for bicyclists it
could be suboptimal.

Lastly, due to significantly larger amount of vehicle data
as compared to VRUs, instead of training from scratch we
fine-tuned VRU models using preloaded weights from a
pretrained vehicle model. As observed in the second-to-last
row, directly applying the vehicle model to bicyclists and
pedestrians without fine-tuning results in poor performance
across the board, even worse than UKF, due to a different
nature of these actor types as compared to vehicles. On
the other hand, with additional fine-tuning using training
data of corresponding actor types the bicyclist performance
improved over the baseline, indicating that bicyclists may
exhibit somewhat similar behavior to vehicles. We can also
see that the pedestrian model regressed, explained by the fact
that pedestrian motion is very different from vehicle motion,
thus making vehicle pretraining ineffective.

V. CONCLUSION

Motion prediction of VRU actors is a critical problem
in autonomous driving, as such actors have higher risk of
injury and are less predictable. We applied recently proposed
rasterization technique to generate raster images of actors’
surroundings, used as inputs to CNNs trained to predict
actor trajectory. Importantly, we proposed a fast architecture
suitable for real-time SDV operations in crowded urban
scenes, and conducted a detailed ablation study of rasteri-
zation settings to identify the optimal choice for accurate
VRU predictions. The results indicate benefits of the pro-
posed approaches, and provide useful insights into the task
of motion prediction. Moreover, following extensive offline
tests the model was successfully tested onboard SDVs.
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